Escherichia coli rep helicase unwinds DNA by an active mechanism.
نویسندگان
چکیده
DNA helicases unwind duplex DNA to form the single-stranded (ss) DNA intermediates required for replication, recombination, and repair in reactions that require nucleoside 5'-triphosphate hydrolysis. Helicases generally require a ss-DNA flanking the duplex in order to initiate unwinding in vitro; however, the precise function of the ss-DNA is not understood. If a helicase unwinds DNA by a "passive" mechanism, it would bind to and translocate unidirectionally along the ss-DNA and facilitate duplex unwinding by translocating onto the ss-DNA that is formed transiently by thermal fluctuations in the duplex. We have examined the kinetics of DNA unwinding by Escherichia coli Rep protein (a 3' to 5' helicase) by rapid quench-flow methods using a series of novel, nonnatural DNA substrates possessing 3' flanking ss-DNA within which is embedded either a segment of ss-DNA possessing reversed backbone polarity or a non-DNA [poly(ethylene glycol)] spacer, either of which should block unwinding by a passive helicase. The E. coli Rep helicase effectively unwinds these DNA substrates, ruling out a passive mechanism of unwinding. Instead, the results are consistent with an "active" rolling mechanism during which Rep binds to ss-DNA and duplex DNA simultaneously.
منابع مشابه
Mechanisms of helicase-catalyzed DNA unwinding.
DNA helicases are essential motor proteins that function to unwind duplex DNA to yield the transient single-stranded DNA intermediates required for replication, recombination, and repair. These enzymes unwind duplex DNA and translocate along DNA in reactions that are coupled to the binding and hydrolysis of 5'-nucleoside triphosphates (NTP). Although these enzymes are essential for DNA metaboli...
متن کاملThe 2B domain of the Escherichia coli Rep protein is not required for DNA helicase activity.
The Escherichia coli Rep protein is a 3' to 5' SF1 DNA helicase required for replication of bacteriophage phiX174 in E. coli, and is structurally homologous to the E. coli UvrD helicase and the Bacillus stearothermophilus PcrA helicase. Previous crystallographic studies of Rep protein bound to single-stranded DNA revealed that it can undergo a large conformational change consisting of an approx...
متن کاملKinetic mechanism for the sequential binding of two single-stranded oligodeoxynucleotides to the Escherichia coli Rep helicase dimer.
Escherichia coli Rep helicase is a DNA motor protein that unwinds duplex DNA as a dimeric enzyme. Using fluorescence probes positioned asymmetrically within a series of single-stranded (ss) oligodeoxynucleotides, we show that ss-DNA binds with a defined polarity to Rep monomers and to individual subunits of the Rep dimer. Using fluorescence resonance energy transfer and stopped-flow techniques,...
متن کاملAutoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain.
DNA helicases catalyze separation of double-helical DNA into its complementary single strands, a process essential for DNA replication, recombination, and repair. The Escherichia coli Rep protein, a superfamily 1 DNA helicase, functions in DNA replication restart and is required for replication of several bacteriophages. Monomers of Rep do not display helicase activity in vitro; in fact, DNA un...
متن کاملIdentification and purification of a protein that stimulates the helicase activity of the Escherichia coli Rep protein.
A polypeptide (Mr = 15,000) has been purified from Escherichia coli cell extracts that significantly stimulates the duplex DNA unwinding reaction catalyzed by E. coli Rep protein. The Rep helicase unwinding reaction was stimulated by as much as 20-fold, upon addition of the stimulatory protein, using either a 71-base pair or a 343-base pair partial duplex DNA molecule as a substrate. The purifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 32 27 شماره
صفحات -
تاریخ انتشار 1993